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Abstract 

 Forecasters have surmised that the unique terrain found in eastern New York and 

western New England plays a pivotal role in modulating various weather phenomena in 

the region.  Several studies have examined the interplay between low-level channeled 

airflow within the Mohawk and Hudson River valleys, the surrounding hilly terrain (i.e., 

the Adirondack, Catskill, Green, and Berkshire Mountains), and the overall effect on 

warm-season severe weather events. To date, however, the impact on cold-season 

weather events of low-level flow channeling in eastern New York and western New 

England has gone largely unmentioned in the peer-reviewed literature. 

 The goal of this study is to examine, on the synoptic and mesoscale, the 

occurrence of a low-level convergence zone, which forms during the cold season from 

time to time, where the Mohawk and Hudson valleys intersect.  Known to pose a 

challenge to local forecasters and referred to colloquially as the “Mohawk–Hudson 

convergence zone” (MHC), the development of the convergence zone generally does not 

lead to high-impact weather; however, convergence-related precipitation can wreak 

havoc if it occurs with little or no warning or at peak travel times.  Such was the case on 

27 November 2002, when a localized area of light-to-moderate snow persisted over 

eastern New York and western New England for several hours following the conclusion 

of synoptic-scale snowfall from an “Alberta Clipper.”  The nascent interest generated 

following that event led to a total of seven observational studies of MHC events, all of 

which occurred between November 2002 and January 2008. 

 Several noteworthy similarities were observed from case to case, all of which 

control the physical processes necessary to generate a MHC event.  These include: (1) a 
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positive north–south (west–east) sea-level pressure difference along the Hudson 

(Mohawk) Valley, which drives the confluent flow; (2) an absence of strong cold air 

advection, which precludes strong subsidence and drying of the boundary layer; and (3) a 

statically stable atmospheric stratification, which prevents downward transport of higher-

speed air aloft to the surface that would tend to reduce or eliminate the local terrain-

induced surface wind signature. 

 The empirical nature of this study led to the development of a conceptual model 

of MHC in the form of a composite map containing the synoptic and mesoscale weather 

features present during an event.  These features include: (1) an intensifying surface 

cyclone over the western Atlantic Ocean, which moves east and/or south of 40°N, 70°W; 

(2) a trough of surface low pressure, which extends westward from the low center along 

the New York–Pennsylvania border; (3) a geopotential-height trough at 300 hPa, which 

places eastern New York and western New England under the left-entrance region of a jet 

streak, an area that favors sinking air.  Furthermore, sea-level isobars are generally 

arranged in the shape of a reverse-S, with higher pressures located to the north (west) of 

Poughkeepsie, New York (Pittsfield, Massachusetts). 

 Finally, an effort is made to increase the predictability of future MHC events 

through the use of an operational forecasting scheme.  To this end, a decision tree for 

forecasters is developed and presented in this study. 
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(d) 0600, (e) 1200, and (f) 1800 UTC 29 January 2007. 
 
Figure 3.25: As in Fig. 3.8, except for (a) 1200, (b) 1800 UTC 28 January 2007, (c) 0000, 
(d) 0600, (e) 1200, and (f) 1800 UTC 29 January 2007. 
 
Figure 3.26: As in Fig. 3.9, except for (a) 1200, (b) 1800 UTC 28 January 2007, (c) 0000, 
(d) 0600, (e) 1200, and (f) 1800 UTC 29 January 2007. 
 
Figure 3.27: As in Fig. 3.10, except for (a) 1200, (b) 1800 UTC 28 January 2007, (c) 
0000, (d) 0600, (e) 1200, and (f) 1800 UTC 29 January 2007. 
 
Figure 3.28: As in Fig. 3.11, except for (a) 1200, (b) 1800 UTC 28 January 2007, (c) 
0000, (d) 0600, (e) 1200, and (f) 1800 UTC 29 January 2007. 
 
Figure 3.29: As in Fig. 3.12, except for (a) 1200, (b) 1800 UTC 28 January 2007, (c) 
0000, (d) 0600, (e) 1200, and (f) 1800 UTC 29 January 2007. 
 
Figure 3.30: As in Fig. 3.13, except for (a) 1200, (b) 1800 UTC 28 January 2007, (c) 
0000, (d) 0600, (e) 1200, and (f) 1800 UTC 29 January 2007. 
 
Figure 3.31: As in Fig. 3.14, except for (a) 1800 UTC 28 January 2007, (b) 0000, (c) 
0600, (d) 1200, (e) 1500, and (f) 1800 UTC 29 January 2007. Precipitation related to 
MHC is circled in red. 
 
Figure 3.32: As in Fig. 3.15, except for (a) 2359 UTC 28 January 2007, (b) 0304, 
(c) 0601, (d), 0857, (e) 1203, and (f) 1500 UTC 29 January 2007. 
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Figure 3.33: As in Fig. 3.16, except for 0600 UTC 29 January 2007. 
 
Figure 3.34: As in Fig. 3.17, except from 2000 UTC 28 January to 1200 UTC 29 January 
2007 for (a) KSYR, (b) KGFL, (c) KALB and (d) KPOU. 
 
Figure 3.35: As in Fig. 3.18, except from 2200 UTC 28 January to 1400 UTC 29 January 
2007 for KSYR, KGFL, KALB, KPOU, and KSPF.  (Data source: University at Albany 
DEAS archives). 
 
Figure 3.36: As in Fig. 3.19, except for 1200 UTC 29 January 2007. 
 
Figure 3.37: As in Fig. 3.21, except for 0000 (green line and barbs), 0600 (black line and 
barbs), and 1200 UTC 29 January 2007 (red line and barbs). 
 
Figure 3.38: As in Fig. 3.22, except for 0000 (green line and barbs), 0600 (black line and 
barbs), and 1200 UTC 29 January 2007 (red line and barbs). 
 
Figure 3.39: in Fig. 3.23, except from GOES-12 at 0845 UTC 29 January 2007. 
 
Figure 3.40: As in Fig. 3.15, except for (a) 1803, (b) 2101, (c) 2358 UTC 16 December 
2002, (d) 0302, (e) 0603, and (f) 0900 UTC 17 December 2002. 
 
Figure 3.41: As in Fig. 3.7, except for (a) 0000, (b) 0600, (c) 1200, (d) 1800 UTC 16 
December 2002, (e) 0000, and (f) 0600 UTC 17 December 2002. 
 
Figure 3.42: As in Fig. 3.10, except for (a) 0000, (b) 0600, (c) 1200, (d) 1800 UTC 16 
December 2002, (e) 0000, and (f) 0600 UTC 17 December 2002. 
 
Figure 3.43: As in Fig. 3.13, except for (a) 0000, (b) 0600, (c) 1200, (d) 1800 UTC 16 
December 2002, (e) 0000, and (f) 0600 UTC 17 December 2002. 
 
Figure 3.44: Regional surface analysis for eastern New York and New England at 0300 
UTC 17 December 2002.  Isobars (solid) every 4 hPa.  Isotherms (dashed) every 4°C.  
Temperature (°C) is plotted above visibility at several stations; missing station data have 
been omitted.  (Data source: the University at Albany DEAS archives, with supplemental 
data provided by the Historical Weather Data Archives of NSSL). 
 
Figure 3.45: As in Fig. 3.17, except from 1800 UTC 16 December to 0600 UTC 17 
December 2002.  (Data source: the University at Albany DEAS archives, with 
supplemental data provided by the Historical Weather Data Archives of NSSL). 
 
Figure 3.46: As in Fig. 3.18, except from 1800 UTC 16 December to 0800 UTC 17 
December 2002). 
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Figure 3.47: As in Fig. 3.19, except for (a) 1200 UTC 16 December 2002 and (b) 0000 
UTC 17 December 2002.  (Data source: 0-h gridded, initialized 1.0° NCEP GFS 
analyses). 
 
Figure 3.48: As in Fig. 3.23, except for 2345 UTC 16 December 2002. 
 
Figure 3.49: As in Fig. 3.15, except for (a) 1600, (b) 1800, (c) 1958, (d) 2202 UTC 23 
January 2003, (e) 0004, and (f) 0159 UTC 24 January 2003. 
 
Figure 3.50: As in Fig. 3.7, except for (a) 1200, (b) 1800 UTC 23 January 2003, (c) 0000, 
and (d) 0600 UTC 24 January 2003. 
 
Figure 3.51: As in Fig. 3.10, except for (a) 1200, (b) 1800 UTC 23 January 2003, (c) 
0000, and (d) 0600 UTC 24 January 2003. 
 
Figure 3.52: As in Fig. 3.13, except for (a) 1200, (b) 1800 UTC 23 January 2003, (c) 
0000, and (d) 0600 UTC 24 January 2003. 
 
Figure 3.53: As in Fig. 3.16, except for 2100 UTC 23 January 2003. 
 
Figure 3.54: As in Fig. 3.17, except from 1500 UTC 23 January to 0600 UTC 24 January 
2003. (Data source: the University at Albany DEAS archives, with supplemental data 
provided by the Historical Weather Data Archives of NSSL). 
 
Figure 3.55: As in Fig. 3.18, except from 1500 UTC 23 January to 0600 UTC 24 January 
2002.  (Data source: the University at Albany DEAS archives, with supplemental data 
provided by the Historical Weather Data Archives of NSSL). 
 
Figure 3.56: As in Fig. 3.19, except for (a) 1200 UTC 23 January 2003 and (b) 0000 UTC 
24 January 2003. 
 
Figure 3.57: As in Fig. 3.23, except for 2045 UTC 23 January 2003. 
 
Figure 3.58: As in Fig. 3.15, except for (a) 1003, (b) 1201, (c) 1359, (d) 1558, (e) 1803, 
and (f) 2001 17 January 2005. 
 
Figure 3.59: As in Fig. 3.7, except for (a) 0000, (b) 0600, and (c) 1200 UTC 17 January 
2005. 
 
Figure 3.60: As in Fig. 3.7, except for (a) 0000, (b) 0600, and (c) 1200 UTC 17 January 
2005. 
 
Figure 3.61: As in Fig. 3.13, except for (a) 0000, (b) 0600, and (c) 1200 UTC 17 January 
2005. 
 
Figure 3.62: As in Fig. 3.16, except for 1200 UTC 17 January 2005. 
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Figure 3.63: As in Fig. 3.17, except from 1000 to 1800 UTC 17 January 2005. 
 
Figure 3.64: As in Fig. 3.18, except from 1000 to 1800 UTC 17 January 2005. (Data 
source: University at Albany DEAS archives). 
 
Figure 3.65: As in Fig. 3.19, except for (a) 1200 UTC 17 January 2005 and (b) 0000 UTC 
18 January 2005. 
 
Figure 3.66: As in Fig. 3.23, except from GOES-12 at 1145 UTC 17 January 2005. 
 
Figure 3.67: As in Fig. 3.15, except for (a) 0000, (b) 0202, (c) 0359, (d) 0601, (e) 0757, 
and (f) 0901 UTC 3 March 2006. 
 
Figure 3.68: As in Fig. 3.7, except for (a) 0000, (b) 0600, and (c) 1200 UTC 3 March 
2006. 
 
Figure 3.69: As in Fig. 3.10, except for (a) 0000, (b) 0600, and (c) 1200 UTC 3 March 
2006. 
 
Figure 3.70: As in Fig. 3.13, except for (a) 0000, (b) 0600, and (c) 1200 UTC 3 March 
2006. 
 
Figure 3.71: As in Fig. 3.16, except for 0300 UTC 3 March 2006. 
 
Figure 3.72: As in Fig. 3.17, except from 0000 to 1200 UTC 3 March 2006. 
 
Figure 3.73: As in Fig. 3.18, except from 0000 to 1200 UTC 3 March 2006. (Data source: 
University at Albany DEAS archives). 
 
Figure 3.74: As in Fig. 3.19, except for (a) 0000 UTC 3 March 2006 and (b) 1200 UTC 3 
March 2006. 
 
Figure 3.75: As in Fig. 3.23, except from GOES-12 at 0401 UTC 3 March 2006. 
 
Figure 3.76: As in Fig. 3.15, except for (a) 0757, (b) 1004, (c) 1201, (d) 1357, (e) 1604, 
and (f) 1801 UTC 2 January 2008. 
 
Figure 3.77: As in Fig. 3.7, except for (a) 0600, (b) 1200, and (c) 1800 UTC 2 January 
2008. 
 
Figure 3.78: As in Fig. 3.10, except for (a) 0600, (b) 1200, and (c) 1800 UTC 2 January 
2008. 
 
Figure 3.79: As in Fig. 3.13, except for (a) 0600, (b) 1200, and (c) 1800 UTC 2 January 
2008. 
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Figure 3.80: As in Fig. 3.17, except from 0600 to 2000 UTC 2 January 2008.  (Data 
source: the Historical Weather Data Archives of NSSL). 
 
Figure 3.81: As in Fig. 3.80, except for (a) KSYR, (b) KGFL, (c) KALB, and (d) KPOU. 
 
Figure 3.82: Sea level pressure time series (hPa) from 0600 to 2300 UTC 2 January 2008 
for KSYR, KGFL, KALB, KPOU, and KPSF (trace and data point markers according to 
the legend).  (Data source: the University at Albany DEAS archives). 
 
Figure 3.83: Skew T–log p radiosonde observations at KALY (72518) of air temperature 
(red line, in °C), dewpoint (blue line, in °C), and wind (to the right of the sounding; 
m s−1, with pennant, full barb, and half barb denoting 25, 5, and 2.5 m s−1, respectively) 
for 1200 UTC 2 January 2008.  Various thermodynamic parameters are reported in green 
text at the top of the sounding.  (Data source: Ohio State University weather archives). 
 
Figure 4.1: Schematic of the key features observed during a prototypical MHC event on 
the (a) synoptic-scale and (b) mesoscale.  Shown in (a) are: an intensifying area of 
surface low pressure located southeast of 40°N, 70°W, and moving northeastward (red 
“L”); sea level isobars (solid black lines); a trough of surface low pressure; the attendant 
areas of synoptic-scale snow (white shading) and rain (green shading); the axis of 300-
hPa maximum winds (heavy pink line) and jet streaks (pink shading); weak low-level 
cold advec-tion from the north; the area which bounds the MHC domain (red box).  
Shown in (b) are: the Mohawk and Hudson Rivers (royal blue line) and their associated 
valleys (light blue shading); low-level channeled flow (red arrows); sea level isobars with 
higher pressures indicated to the north and west (solid black lines); the approximate 
location of mesoscale snow forced by MHC effects (stippled shading); the locations of 
bellwether surface observation sites used in seven case studies (red circles and 
corresponding station codes. 
 
Figure 4.2: A decision tree for forecasting MHC.  Adapted from Fig. 2 of Whitney et al. 
(1993). 
 


